УДК 614.8.084 doi:10.34987/vestnik.sibpsa.2021.94.13.008

## Исследование параметров взрыва при низких температурах

Крехов А.А.<sup>1</sup>, Клочков С.В.<sup>1</sup> к.ф.-м.н., доцент, Минкин А.Н.<sup>1,2</sup> к.т.н., доцент, Чистова Е.В.<sup>1</sup>, Пашкина Т.М.<sup>2</sup>

<sup>1</sup>ФГАОУ ВО «Сибирский федеральный университет» <sup>2</sup>ФГБОУ ВО Сибирская пожарно-спасательная академия ГПС МЧС России

**Аннотация.** В статье анализируется зависимость мощности взрыва газовоздушной смеси от начальных параметров этой смеси посредством применения датчика контроля теплового потока. Определяется наиболее опасная концентрация в условиях низких температур. Исследуется изменение величины теплового потока в начальный момент взрыва при разных условиях.

Ключевые слова: взрыв при низких температурах, газовоздушная смесь, дефлаграционный взрыв, концентрационные пределы взрываемости, показатели ударной волны, датчик контроля теплового потока.

## **INVESTIGATION OF EXPLOSION PARAMETERS AT LOW TEMPERATURES**

Krekhov A.A.<sup>1</sup>, Klochkov S.V.<sup>1</sup> Ph.D. of Physico-mathematical Sciences, Docent, Minkin A.N.<sup>1,2</sup> Ph.D. of Engineering Sciences, Docent, Chistova E.V.<sup>1</sup>, Pashkina T.M.<sup>2</sup>

> <sup>1</sup>FSAEI HE Siberian Federal University <sup>2</sup>FSBEE HE Siberian Fire and Rescue Academy EMERCOM of Russia

**Abstract.** In the given article, the dependences of gas-air mixture explosion power of on the initial parameters are analyzed. The usage of heat flow control sensor for determining the most dangerous concentration of gas-air mixture is at low temperatures is discussed. The heat flux's magnitude changes at the initial moment of the explosion under different conditions are investigated.

Key words: Low temperature explosion, gas-air mixture, deflagration explosion, concentration explosion limits, shock wave indicators, heat flow control sensor

В настоящее время разработаны методики [1] определения динамики возникновения взрыва газовоздушных смесей в природной среде при так называемых «нормальных условиях». Однако влияние низких температур на развитие процесса взрыва, на ранней стадии протекания, достаточно слабо изучены. В связи с этим актуальной проблемой становится изучение влияния низких температур на динамику взрыва и горения газовоздушной смеси при интенсивном освоении месторождений Крайнего Севера.

Следует отметить, что при крайне низких температурах окружающей среды, высокомолекулярные соединения природного газа остаются в сжиженном состоянии, а в атмосферу испаряются низкомолекулярные органические соединения, в том числе эфиры, распространение пламени по которым, происходит с большей, чем в нормальных условиях, скоростью. Данная работа будет посвящена исследованию влияния низких температур на параметры возникновения взрыва газовоздушной смеси посредством фиксации значения теплового потока (далее – TП).

В качестве фиксирующего прибора был выбран датчик контроля теплового потока (далее – ДКТП), параметры и технические возможности которого представлены в патенте [2], а также подробно описаны в работах [3-5].

Для получения экспериментальных данных посредством вышеописанного оборудования была разработана принципиальная схема испытательного стенда (рисунок 1).

В основу эксперимента принят двадцатиметровый полиэтиленовый двухслойный рукав (выполненный в форме трубы) с запаянными торцами (1). Диаметр трубы принят равным 1 м, толщина стенки 1 мм.

На равном расстоянии (Рис.1) устанавливались предварительно откалиброванные ДКТП (согласно описанной в [5] методике), формирующие восемь точек фиксации значений теплового потока (далее – Точки 1...8).



Рис. 1. Принципиальная блок-схема испытательного стенда

Атмосферный воздух при помощи компрессора (8) через газовый шланг (4) и газовый расходомер диафрагменный с температурной компенсацией (5) поступает в полиэтиленовый рукав (трубу) с одного из торцов до появления натяжения стенок.

Параллельно с подачей атмосферного воздуха через соседний газовый шланг осуществляется подача природного газа (6) для образования однородности среды в рукавной линии. В рукавную линию помещался источник инициализации горения (2) и производилась герметизация рукава.

Объем рукава являлся постоянной величиной и составлял 15,7 м<sup>3</sup>. Для экспериментальной установки принято решение проведения реакции взрыва с шагом 1,5 % объема газа. Величины газа и воздуха представлены в сводной табл.1.

| Порядковый номер | Концентрация газа |                | Концентрация кислорода |                |
|------------------|-------------------|----------------|------------------------|----------------|
|                  | %                 | M <sup>3</sup> | %                      | M <sup>3</sup> |
| 1                | 2                 | 0,31           | 98                     | 15,39          |
| 2                | 3,5               | 0,55           | 96,5                   | 15,15          |
| 3                | 5                 | 0,79           | 95                     | 14,92          |
| 4                | 6,5               | 1,02           | 93,5                   | 14,68          |
| 5                | 8                 | 1,26           | 92                     | 14,44          |
| 6                | 9,5               | 1,49           | 90,5                   | 14,21          |

Таблица 1. Численная величина концентрации ГВС

В результате анализа метеоданных были выбраны следующие условия проведения эксперимента:

– для выявления динамики развития взрыва интервал температурных показаний принят

- от +30°С до -42°С (по возможности ниже);
- шаг температур составляет 10°С для каждого блока испытаний;
- отсутствие осадков, минимальный ветер (или штиль);
- с учетом особенностей фиксирующего оборудования (в т.ч. высокоскоростных видеокамер) только дневное время.

Каждое испытание состояло из пяти реализаций взрыва, посредством срабатывания источника инициализации горения согласно табл.2.

| № варианта реализации взрыва | Концентрационный предел<br>взрываемости (%) | Уточнение                   |
|------------------------------|---------------------------------------------|-----------------------------|
| Вариант 1                    | 2,0                                         | Варианты по 3,5 и 5,0 %     |
| Вариант 2                    | 3,5                                         | получили идентичные         |
| Вариант 3                    | 6,5                                         | численные величины, поэтому |
| Вариант 4                    | 8,0                                         | концентрационный предел     |
| Вариант 5                    | 9,5                                         | взрываемости 5,0 % не       |
| 1                            | ,                                           | учитывается                 |

Таблица 2. Проведение взрыва ГВС

Погодные условия подбирались с учетом возможности охвата всего вероятного диапазона температурных показаний окружающей среды. Также в учет, для увеличения точности измерений, принимались следующие характеристики:

– направление и скорость ветра (м/с) минимальны (штиль);

- отсутствие осадков.

Эксперименты проводились в летнее и зимнее время для трех типов начальных условий:

1. После заполнения объема рукава газовоздушной смесью производится выдержка в 600 с для образования однородной смеси и разделения газа на фракции (только при отрицательной температуре);

2. После заполнения объема рукава газовоздушной смесью выдержка не производится (происходит мгновенная детонация объема);

3. В объем рукава устанавливаются турбулизаторы и после заполнения объема рукава газовоздушной смесью производится детонация без выдержки.

В первом случае, после образование облака с присутствующим в нем горючим компонентом в смеси с окислителем в определенном диапазоне концентраций, как правило, следует взрыв газовоздушных смесей. Показатели ударной волны за пределами взрывного облака и динамика процесса горения газовой смеси определяются физико-техническими свойствами ГВС, формой и объемом облака на момент взрыва, а также местом возникновения взрыва (у центра или края облака).



Рис. 2. Испытания первого типа в зимнее время

При выполнении выдержки газовоздушной смеси происходит ее разделение путем фракционной конденсации. В результате происходит обогащение относительно менее летучими (высококипящими) компонентами, а несконденсировавшийся пар - более летучими (низкокипящими). За счет этого, в большей степени, происходит «горение» нижней фракции и мгновенное приращение (взрыв) верхней, за счет чего мощность взрыва усиливается.

Во втором случае, без выполнения выдержки газовоздушной смеси, ее разделение на фракции не происходит. За счет этого происходит дефлаграционный взрыв [6].



Рис. 3. Испытания второго типа в зимнее время

В последнем случае, мощность протекания дефлаграционного взрыва, значительно возрастает [6] и можно сделать вывод, что, в случае аварийной ситуации на производственном объекте нефтегазового комплекса, при наличии вблизи источника аварии или в селитебной зоне (подпадающей под зону действия взрыва) зданий и строений, поражающая зона увеличится.



Рис. 4. Испытания третьего типа в зимнее время

Проведенный блок экспериментов был реализован при концентрациях, указанных в табл. 2, что является нижним и верхним концентрационным пределами (далее - КП). Стоит отметить, что максимальное значение теплового потока при отрицательной температуре смещено в область пределов близких к верхнему. При положительных температурах значение находится ближе к середине интервала КП. Как видно из рисунка 5, концентрация 8,0% имеет наиболее мощный характер протекания взрыва.

Научно-аналитический журнал «Сибирский пожарно-спасательный вестник» № 3 (22) – 2021 www.vestnik.sibpsa.ru



Рис. 5. Зависимость полученных в Точке 1 данных от концентрации

На рисунке 6 представлены экспериментальные зависимости значений ТП, полученные для концентраций 2% и 8%. Как можно заметить, величины тепловых потоков в начальный момент времени отличаются более чем в 3 раза.



Рис.6. Экспериментальные данные ДКТП полученные при концентрациях газа 8,0 и 2,0 % от основного объема рукава

Распределение значений ТП на для различных температурных режимов для значения концентрации 8% представлено на диаграмме ниже.



Рис. 7. Зависимость полученных в Точке 1 данных от температуры

Для граничных значений наблюдаемого температурного интервала усредненная картина изменения величины теплового потока во времени по всем фиксируемым точкам представлена на следующем графике.



*Рис. 8. Экспериментальные данные значения ТП, полученные при температурах -42 °C и +30 °C (концентрация 8,0 %)* 

Достоверность показаний ДКТП оценивалось по соотношению десятикратного повторения каждого испытательного стенда при идентичных метеорологических условиях (температура окружающей среды, влажность воздуха, наличие и скорость ветра), идентичной концентрации газовоздушной смеси и определении абсолютной и относительной погрешностей. С применением ЭВМ «Advanced Grapher» и «Excel» были вычислены среднее квадратичное отклонение, коэффициент корреляции, коэффициент регрессии и средняя погрешность аппроксимации.

По формуле (1) определены величины случайной ошибки результата измерения при п наблюдениях (за основу принят способ средней квадратичной ошибки).

$$S_n = \sqrt{\frac{\sum_{i=1}^{n} (\bar{x} - x_i)^2}{n - 1}},$$
(1)

где n-число наблюдений;

x - среднее арифметическое значение показателя;

*х<sub><i>i*</sub>- результаты наблюдений.

Среднее значение каждого из показателя определяли по (2) как среднее арифметическое из полученных результатов наблюдений:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$
 (2)

Абсолютная погрешность рассматриваемого прибора определена, как разность между средним арифметическим значением каждого из показателей и значением, полученным при отдельном наблюдении *х*от. по формуле:

$$\Delta x_i = \left| \bar{x} - x_{om. \mu a \delta \pi} \right|,\tag{3}$$

Научно-аналитический журнал «Сибирский пожарно-спасательный вестник» № 3 (22) – 2021 www.vestnik.sibpsa.ru

Относительная погрешность определяется как отношение средней квадратичной ошибки к среднему арифметическому значению показателей:

$$\varepsilon = \frac{1}{n} \sum_{i=1}^{n} \frac{\Delta x_i}{\bar{x}} \cdot 100\%, \tag{4}$$

Для установления случайной ошибки необходимы данные в части доверительного интервала и величины доверительной вероятности, которая оценивает величину надежности полученных значений. При измерениях можно ограничиться доверительной вероятностью  $\alpha=0,95$ , которой соответствует доверительный интервал в долях  $\omega=2,0$ . Для измерений показателей каждого наблюдения при соответствующей температуре испытания доверительный интервал  $\Delta \tau_x^-$  определяется по формуле:

$$\Delta \tau_x^- = S_n \cdot \omega, \tag{5}$$

Статистическая обработка результатов при десяти наблюдениях с указанием доверительного интервала представлена на нижеследующем графике:



Рис. 9. Зависимости мощности теплового потока газовоздушной смеси (Вт/м<sup>2</sup>) от времени протекания процесса взрыва при температуре +30°C (количество повторений опыта – 10)

Для остальных температур были получены аналогичные результаты.

Таким образом, в ходе работы были определены наиболее опасные концентрационные пределы взрываемости газовоздушной смеси при отрицательных температурах окружающей среды. Также авторами выявлены закономерности протекания процессов взрыва при различных начальных параметрах концентрации и температуры окружающей среды. Результаты исследования планируется использовать, в том числе, для анализа пожарной опасности магистральной линии газопроводов и моделирования взрыва газовоздушной смеси в замкнутом объеме.

## Литература

1. Безбородов, Ю.Н. Метод и средства контроля фиксации взрыва газовоздушной смеси в условиях низких температур / Ю.Н. Безбородов, А.А. Крехов // Молодая нефть : материалы IV Всерос. молодежной научн.-техн. конф. нефтегазовой отрасли (Красноярск, 20 мая 2017 года). – Красноярск : Сиб. федер. ун-т, 2017. – С. 362–366. 2. Патент № RU 195452 U1 Российская Федерация, МПК G08B 17/113 (2006.01). Датчик контроля теплового потока : № 2019123250 : заявл. 18.07.2019 : опубл. 28.01.2020 / Крехов А.А., Клочков С.В., Минкин А.Н., Едимичев Д.А. ; заявитель и патентообладатель ФГАОУ ВО «Сибирский федеральный университет». – 6 с. : ил.

3. Крехов, А.А. Применение датчика контроля теплового потока для раннего обнаружения образования взрывной концентрации газовоздушной смеси в условиях низких температур / А.А. Крехов, Ю.Н. Безбородов, С.В. Клочков, А.Н. Минкин // Сибирский пожарно-спасательный вестник. – 2019. – № 2. – С. 33-38.

4. Krekhov, A.A The upgrade heat flux sensor application for early fire detection / A.A. Krekhov, S.V. Klochkov, A.N. Minkin, S.N. Masaev. – DOI: 10.1088/1742-6596/1515/4/042111. // Journal of Physics: Conference Series, 2020. – Vol. 1515, Is. 4. – URL: https://iopscience.iop.org/article/10.1088/1742-6596/1515/4/042111 (дата обращения 20.09.2020).

5. Krekhov, A.A. Gas and air mixture explosion features exploration under low temperature conditions / A.A. Krekhov, Y.N. Bezborodov, S.V. Klochkov, A.N. Minkin. // Actual issues of polychotomic analysis, 2019. – P. 29-46.

6. ГОСТ Р 22.0.08-96. Безопасность в чрезвычайных ситуациях. Техногенные чрезвычайные ситуации. Взрывы. Термины и определения : национальный стандарт Российской Федерации : дата введения 1997-07-01 / Госстандарт России. – Изд. официальное. – Москва : ИПК Издательство стандартов, 1996. – 8 с.